Ⅰ. 서 론
1. 연구의 배경 및 목적
기존의 도로시설 및 교통운영에 첨단교통정보기술 (ICT : Information and Communication Technology, 이 하 ICT)이 융합된 지능형교통체계(ITS : Intelligent Transport Systems)는 도로교통시설의 이용효율을 극 대화함은 물론 이용편의와 안전을 제고하며, 에너지 절감 등 환경친화적인 교통체계를 구현하는 것이 주 된 목표이다. 우리나라에서는 물류비 부담이 가중되 고 산업의 국제경쟁력을 저해하는 만성적인 교통혼 잡을 완화할 새로운 교통정책이 필요함에 따라 1990 년대부터 본격적으로 ITS를 도입하게 되었다.[1]
ITS를 통한 효율적인 교통관리 및 교통정보 제공 을 위해서는 검지기를 통한 교통자료 수집이 필수 적으로, 고속도로 교통관리시스템(ETMS : Expressway Traffic Management Systems, 이하 ETMS)은 1993년부 터 구축되어 약 1km 간격으로 검지기를 설치하여 지점자료를 수집하고 있으며, 구간자료는 TCS(Toll Collection System, 이하 TCS)를 이용하여 수집하고 있다. 또한 최근에는 DSRC(Dedicated Short Range Communications) 기반의 구간자료 역시 수집되고 있 다. 다양하게 수집된 교통자료는 교통센터에서 가공 되어 VMS, 휴대폰, 교통방송 등의 정보제공매체를 통해 운전자에게 제공되고 있으며 갓길차로제(LCS, Lane Control Systems, 이하 LCS) 등 교통관리의 기 본 자료로 이용되고 있다.[2]
지점검지기 자료는 전수화된 교통자료를 수집할 수 있다는 장점이 있지만, 구간 통행시간 등 교통정 보 제공용으로 이용하기 위해서 변환하는 과정이 필 수적이며, 이 과정에서 오차가 발생한다는 단점이 있 다. 이에 반해 구간검지기 자료는 전수화된 자료는 아니지만, 보다 정확하게 구간 통행속도 및 통행시간 산출이 가능하다는 장점이 있다. 따라서 교통정보 제 공을 위해서는 구간검지기 자료가, 교통관리를 위해 서는 지점검지기 자료가 주로 활용되고 있다.
지점검지기는 루프, 영상, 극초단파, 자기, 초음파 등 다양한 센서기술이 이용되며, 이중에서도 루프 검지기는 전통적으로 가장 많이 이용되고 있으며 자 료의 신뢰도 역시 높은 것으로 알려져 있다. 그러나, 루프검지기는 차로에 검지센서를 매설해야하는 방식 으로 설치 및 유지보수의 한계를 가지고 있다. 이와 같은 매설방식 검지기의 한계를 극복하고자 영상검 지기가 개발되었다. 영상검지기는 일반적으로 비디 오 영상장비를 통해 교통자료를 수집하는 비매설방 식으로 노변에 설치되어 교통정보를 수집한다.
그러나, 영상검지기는 카메라를 통해 수집된 영 상자료를 이용하기 때문에 일출, 일몰, 야간 등의 조 도 변화, 안개, 강우, 강설 등의 날씨 변화에 검지기 의 신뢰도가 달라지는 문제를 보이고 있다. 그럼에 도 불구하고 설치 및 유지관리의 용이성 때문에 최 근 고속도로에는 영상검지기가 적극적으로 설치되 고 있다. 이러한 영상검지기의 증가에 따라 교통정 보에 대한 신뢰도에 대한 우려가 높아지고 있다.
따라서 본 연구에서는 고속도로를 대상으로 대표 적인 지점검지기인 영상과 루프검지기의 신뢰도를 비교하고 구간 교통량1) 대표치를 생성할 때 오차를 감소시킬 수 있는 개선방안을 제시하고자 한다.
Ⅱ. 기존 연구 고찰
현재 교통관리시스템에 설치되는 차량검지기는 정보수집방식에 따라 지점검지방식과 공간검지방식 이 있으며 지점검지방식의 장비는 검지센서 종류, 검 지원리, 매설여부 등에 따라 <표 1>과 같이 구분할 수 있다. 또한 비콘, 영상인식장치, DSRC(Dedicated Short Range Communications) 등을 이용한 통행시간 을 기반으로 정보를 얻는 AVI(Automatic Vehicle Identification)로 주로 통칭되는 구간검지방식에는 <표 2>와 같은 종류가 있다.[6]
전술한 것과 같이 구간검지기는 통행시간 등의 정보 제공을 위해 사용되며, 지점검지기는 정체 상황을 파악 하고 병목지점 개선 등의 교통관리를 위해 사용된다.
지점 및 구간 검지기의 신뢰도와 관련된 연구는 국내에 ITS가 활성화된 2000년 이후 본격적으로 시 행되었다. 장진환 외(2005)는 현재 고속도로와 일반 국도 ITS를 위한 핵심 검지장비인 영상검지기에 대 한 성능을 차량의 속도그룹별로 분석했고, 통과차량 의 속도저하에 의한 검지자료의 부정확성의 원인을 규명한 후, 이에 대한 해결책을 제시했다. 분석결과, 속도 자료의 경우에는 차량의 통과속도가 50kph 이 하로 떨어질 때부터 성능이 저하되고, 교통량과 점 유율의 경우에는 30kph 이하일 때부터 성능이 저하 되는 것으로 분석되었다.[3]
김대호 외(2002)는 현재 다양한 교통정보 서비스 와 소통수준 재고를 목표로 국내 여러 도시에서 진 행 중인 첨단교통관리체계(ATMS)사업이 운영 또는 구축 중에 있으며 도로상의 교통정보를 보다 정확 히 수집하기 위해 다양한 종류의 차량검지시스템이 도입되고 있으나 기존 국내외 사례를 볼 때 제반 검 지기의 성능평가 방안이 사업별로 상이한 기준으로 진행되었으며 객관적인 성능수준을 제시하지 못하 고 있는 것으로 분석하였다.[6]
이환필 외(2012)는 차량검지기의 속도측정 성능평 가방법을 개발하였다. 개발된 성능평가방법에서는 오 차요인들을 기준속도에 반영하며 측정 불확도의 개념 을 적용하였다. 기존 연구, 통계적 처리기법, 기존 교 통단속장비 및 차량검지시스템의 속도측정 성능평가 방법 등에 대한 고찰을 통해 기존 평가방법의 문제점 을 도출하고 개선된 성능평가 방법을 개발하였다.[7]
이청원 외(2007)는 설치 연도별로 영상검지기의 성능수준을 평가하고 시계열적인 분석을 위한 현장 자료를 수집하였다. 또한, 제조회사, 설치년도 등 각 각의 영상검지기의 특성이 동일하지 않기 때문에 발 생하는 이분산성(heteroscedasticity)문제를 고려하여 영상검지기의 정확도 감소 곡선을 추정하였다.[5]
강진기 외(2002)는 기존 지점검지기와 비콘 검지기 및 매설식 자동차량인식장치의 한계점을 극복하고자 비매설식 AVI를 개발하고 이를 통하여 도로상을 주 행하는 일반적인 차량들을 프로브 차량으로 활용하여 신뢰성 있는 구간교통정보를 산출하는 방법을 개발하 는 것을 목적으로 하였다. 현장 실험 결과 레이져센서 의 차량 검지율은 95%이상, 차량 인식률은 87.8%이 며, 차량 매칭률은 약 14.3%로 분석되어 도로의 교통 상황 추이를 잘 반영하는 것으로 분석하였다.[4]
그러나, 기존 연구에서는 주로 검지기 종류의 따 른 특성분석, 검지기 종류에 따른 오차 분석, 영상검 지기의 교통량․속도 분석 등의 연구가 진행되었으 며, 각 검지기의 장단점, 특징을 비교하여 용도에 맞 게 활용할 수 있도록 제안한 연구는 부족하였다. 특 히 루프검지기 등 대표적 매설식 검지방식이 갖는 설치 및 유지관리의 한계 때문에 비매설식 검지방 식인 영상검지기 등이 주로 활용되고 있으나, 두 검 지기 자료가 어떻게 다른지, 두 검지방식을 결합했 을 때 신뢰도가 어떻게 변화하는지에 대한 분석이 이루어지지 못했으며, 따라서 다양한 검지기에서 올라온 데이터를 조합하여 보다 신뢰할 수 있는 대 표치를 생성하기 위한 노력이 부족하였다.
따라서 본 연구에서는 고속도로를 대상으로 영상 과 루프검지기의 수집된 교통량 차이를 비교분석하 고 실측교통량과의 차이를 분석하여 신뢰도가 높은 대표 구간 교통량 생성방법을 제안하였다. 단, 본 연구에서는 대표치 생성의 개선방안에 대한 내용 적 범위를 교통량으로 제한하였으며, 이는 지점검 지기를 통해서 수집되어 산출되는 구간 통행시간 및 통행속도는 구간 검지기인 DSRC(Dedicated Short Range Communications) 등을 통해 산출되는 자료를 통해 보정되기 때문이다.
Ⅲ. 검지기 데이터 분석
1. 대상지점 선정
분석을 위해 영상검지기와 루프검지기가 동일 구간에 함께 운영되는 구간을 선정하였다. 선정된 구간은 구간 내에 휴게소 등 진출입부가 존재하지 않아, 비록 지점검지기 설치위치는 약간 상이하지 만 거리가 짧아 단위 교통량이 통계적으로 동일하 다고 판단할 수 있는 지점으로 제한하였다. 분석 시 간단위는 교통량의 변동으로 인한 오차를 줄일 수 있도록 최소 시간단위인 1시간을 선택하였다. 또한 분석의 신뢰도를 위해 2개의 서로 다른 노선을 선 택하였다.
최종적으로 선정된 구간은 서울외곽순환고속도 로 성남TG~송파IC~서하남IC~하남JC의 총 14.9km 구간이다. 3개의 구간으로 구분된 대상구간에는 각 구간 내에 입출구가 존재하지 않는다. 또한 서해안 고속도로 목포TG~무안IC 구간을 추가적으로 선정 하여 함께 비교하였다. 대상구간의 위치 및 각 구간 별 검지기의 종류 및 개수는 다음과 같다.
※ ( )는 검지기의 설치 이정을 나타냄
먼저, 서울외곽순환고속도로의 경우, 성남TG~송 파IC 구간은 영상검지기가 2개, 루프검지기가 3개 가 설치되어 있다. 송파IC~서하남IC 구간은 영상검 지기가 1개, 루프검지기가 1개 설치되어 있다. 서하 남IC~하남IC 구간은 영상검지기가 1개, 루프검지기 가 1개 설치되어 있다. 서해안고속도로의 경우, 목 포TG~무안IC구간에서 영상검지기가 1개, 루프검지 기가 7개 설치되어 있다.
구간 내에 동일한 검지기가 여러 개 설치되어 있 는 경우 검지기 종류별로 평균을 산출하여 각각을 비교하였다. 이는 전술한 것과 같이 본 연구의 핵심 이 이종 지점검지기 자료의 결합으로 인해 대표 교 통량 산출 시 오차율이 증가하는 현상을 확인하려 고 했기 때문이다. 따라서 본 연구에서는 동일 구간 내에 영상검지기와 루프검지기가 함께 설치되어 있 는 구간을 선정하여 영상과 루프검지기의 차이를 일교통량과 시간대 평균교통량으로 비교분석하였다.
2. 검지기 교통량 비교
동일한 대상구간 내의 영상검지기와 루프검지기 에서 1시간 간격으로 각각 수집된 시간대별 교통량 데이터를 비교분석하였다. 데이터는 2013년 3월 25 일(월) ~ 29일(금)에 수집되었으며, 특정일에 대한 오차를 줄이기 위해 5일 데이터를 이용하였다.
영상 및 루프검지기의 교통량을 비교한 결과, 1일 누적 교통량에서 성남TG~송파IC 구간은 기점방향 1,430대/일, 종점방향 3,289대/일 차이가 있었다. 송 파IC~서하남IC 구간은 기점방향 11,480대/일, 종점방 향이 3,297대/일, 서하남IC~하남JC 구간은 기점방향 이 6,643대/일, 종점방향이 3,031대/일 차이가 있었다. 결론적으로 영상검지기와 루프검지기에서 수집된 교 통량은 적게는 약 1,500대/일에서 많게는 약 11,500대 /일 차이가 있었다. 특히, 시간대별로 최대 약 1,200 대/시 까지 차이가 발생하여 영상과 루프검지기의 교통량 차이가 매우 심각함을 알 수 있었다.
구간별로 분석한 결과, 성남TG~송파IC~서하남IC 구간은 루프가 영상보다 교통량이 많았으나, 서하남 IC~하남JC 구간 영상이 루프보다 교통량이 많았다. 전반적으로 구간별로 차이는 있지만, 영상보다는 루 프검지기의 교통량이 더 많은 것으로 나타났다. 이는 전술한 것과 같이, 영상검지기는 수집된 영상자료를 이용하기 때문에 검지영역의 설정, 조도 변화에 따 라 검지기의 신뢰도가 낮아지기 때문으로 판단된다.
3. 영상 및 루프 검지기 교통량 차이의 통계적 검증
앞서 영상 및 루프검지기에서 수집된 교통량의 차이가 시간대별, 일별로 매우 크다는 것을 확인하 였다. 이러한 교통량 차이가 통계적으로 유의한 것 인지를 검증하였다. 각 시간대별로 영상 및 루프검 지기에서 수집된 교통량을 변수로 설정하여 Paired T-test를 실시하였다.
영상검지기와 루프검지기의 Paired T-test의 검증 결과, 모든 구간에서 유의수준 0.05 이하로 귀무가 설(두 집단의 평균이 같음)을 기각하게 되어 두 집 단의 평균에는 차이가 있다고 판단할 수 있었다. 즉, IC를 기준으로 동일한 구간 내에 설치된 루프검 지기와 영상검지기 교통량 자료는 통계적으로 서로 다르다고 볼 수 있다.
따라서, 본 논문에서는 통계적으로 차이가 확인 된 각 검지기별 구간 교통량을 실측교통량과의 차 이 및 오차율을 비교하여 구간 대표 교통량 생성 시 신뢰도를 향상 시킬 수 있는 방안에 대하여 제 안하였다.
Ⅳ. 대표치 생성 개선방안
1. 실측 자료 대비 검지기별 신뢰도 비교
영상검지기와 루프검지기 교통량은 동일 구간에 서 수집된 교통량이지만 차이가 있다는 것은 앞서 검증하였다. 하지만, 이는 단순한 차이를 의미하지, 실 제 오차는 아니므로, 실측교통량을 이용하여 각각의 검 지기에서 수집된 자료의 신뢰도를 확인하였다. 여기서, 실측교통량은 고속도로 본선형 영업소의 수납자료인 TCS(Toll Collection System)를 이용하였다.
고속도로 영업소는 본선형 영업소와 IC형 영업소로 구분될 수 있는데 IC형 영업소의 경우 기점 및 종점방 향과 차량의 진출입이 발생하여 실측교통량을 곧바로 산정할 수 없기 때문이다. 그러나, 본선형 영업소의 경 우는 휴게소 등 진출입부가 없는 경우 차량의 진출입 이 불가능하다. 따라서 본선형 영업소가 있고 인근 IC 까지 특정한 진출입이 없는 구간의 TCS를 실측교통량 인 참값으로 활용 가능하다고 판단하였다.
실측교통량의 시간적 범위는 2013년 3월 25일 (월)~29일(금)의 5일로, 실측교통량이 수집되는 구간2) 인 성남TG~송파IC 구간으로 공간적 범위를 제한하였 다. 성남TG~송파IC 구간 내에는 입출구부가 없으므로 각 검지기의 설치 구간(이정)이 상이하더라도 해당 구 간을 통과하는 교통량은 통계적으로 차이가 없다고 판 단할 수 있다.
하지만, 1개 구간은 분석이 제한적이고 표본의 수가 적기 때문에 한계가 있을 수 있다. 따라서, 전술한 것처 럼 성남TG~송파IC 구간과 유사한 조건을 가지고 있어, 실측교통량과의 비교가 용이한 서해안고속도로 목포 TG~무안IC 구간을 추가적으로 분석하였다. 시간적 범 위와 공간적 범위는 동일하게 비교분석하였으며, 각 검 지기의 신뢰도 비교를 위해 실측교통량과의 오차율 분 석 및 통계적 검증을 실시하였다.
실측교통량을 기준으로 영상검지기, 루프검지기, 영상 및 루프검지기의 평균으로 산출되는 대표 교 통량의 차이 및 오차율을 비교하였다. 먼저 성남 TG~송파IC 구간의 실측교통량과 차이를 살펴보면, 기점방향은 영상검지기의 경우 3,425대/일, 루프검지 기의 경우 1,995대/일, 평균교통량의 경우 2,567대/일 로 나타났다. 종점방향은 영상검지기의 경우 2,996 대/일, 루프검지기의 경우 293대/일, 평균교통량의 경우 1,352대/일로 나타났다. 실측교통량과의 차이를 분석한 결과 루프검지기의 차이가 가장 작은 것을 알 수 있다. 이를 오차율로 살펴보면, 기점방향은 영 상검지기의 경우 4.41%, 루프검지기의 경우 2.57%, 영상 및 루프검지기의 평균으로 산출되는 대표 교 통량의 경우 3.30%로 나타났다. 종점방향은 영상검 지기의 경우 4.19%, 루프검지기의 경우 0.41%, 평균 교통량의 경우 1.89%의 오차율을 보이고 있다.
그 다음으로, 목포TG~무안IC 구간의 실측교통량 과 차이를 살펴보면, 기점방향은 영상검지기의 경 우 429대/일, 루프검지기의 경우 161대/일, 평균교통 량의 경우 295대/일로 나타났다. 종점방향은 영상검 지기의 경우 363대/일, 루프검지기의 경우 155대/일, 평균교통량의 경우 259대/일로 나타났다. 실측교통 량과의 차이를 분석한 결과 루프검지기의 차이가 가장 작은 것을 알 수 있다. 이를 오차율로 살펴보 면, 기점방향은 영상검지기의 경우 3.34%, 루프검지 기의 경우 1.21%, 영상 및 루프검지기의 평균으로 산출되는 대표 교통량의 경우 2.30%로 나타났다. 종점방향은 영상검지기의 경우 2.77%, 루프검지기 의 경우 1.18%, 평균교통량의 경우 1.98%의 오차율 을 보이고 있다.
<표12>를 보면, 성남TG~송파IC, 목포TG~무안IC 모두에서 실측교통량과의 차이가 가장 적은 검지기 는 루프검지기로 나타났다. 평균적으로 영상검지기 는 약 5.61%, 루프검지기는 약 3.16%, 영상 및 루프 검지기의 평균은 약 4.35%로 루프검지기에서 검지 된 교통량이 실측교통량과의 차이가 가장 적은 것 을 알 수 있다.
따라서 루프검지기에서 수집된 교통량이 상대적 으로 신뢰도가 가장 높다고 판단할 수 있다. 특히 루프검지기 교통량은 대표 교통량보다 신뢰도가 높 게 나타났다. 이는 현재 교통량 산출 방식인 구간 내에 존재하는 모든 지점검지기의 평균을 이용하는 방식에 문제가 있다는 것을 알 수 있다.
2. 통계적 검증
앞서 실측교통량과 영상검지기 교통량, 루프검지 기 교통량, 영상 및 루프 검지기의 평균교통량과의 차이를 확인하였다. 이를 통계적으로 검증하기 위 하여 기종점과 상관없이 시간대별 실측교통량을 변 수1로 설정하고 루프검지기에서 수집된 시간대별 교통량과 영상검지기에서 수집된 시간대별 교통량, 시간대별 평균 교통량을 각각의 변수2로 설정하여 Paired T-test 검증을 실시하였다. 검증 결과는 다음 과 같다.
실측교통량과 영상검지기, 루프검지기를 통해 수 집된 교통량의 Paired T-test의 검증결과, P-Value를 살펴보면 전구간의 모든 검지기에서 유의수준 0.05 이하로 귀무가설(두 집단의 평균이 같음)을 기각하 게 되어 두 집단의 평균에는 차이가 있다고 분석되 었다. 즉 통계적으로 실측교통량과 영상 검지기 교 통량, 루프검지기 교통량, 평균 교통량이 모두 실측 교통량과 차이가 있다고 판단할 수 있다.
3. 구간 교통량 대표치 생성 개선방안
현재 구간 교통량의 대표치를 생성할 때 일반적 으로 총 3가지의 방법이 있다. 첫 번째로 영상검지 기에서 수집된 교통량을 대표 교통량으로 생성하는 방법, 두 번째로 루프검지기에서 수집된 교통량을 대표 교통량으로 생성하는 방법, 마지막으로 영상 검지기와 루프검지기에서 수집된 교통량의 평균을 대표 교통량으로 생성하는 방법이다. 이 중 실측교 통량과 각각 영상검지기, 루프검지기에서 수집된 교통량, 영상 및 루프 검지기의 일평균 교통량을 도 식화하여 분석하였다. 분석결과, 루프검지기에서 수 집된 교통량이 실측교통량과의 차이가 가장 적게 나타나는 것을 확인할 수 있었다.
이를 종합해보면, 통계적 검증방법을 통해서 모 든 교통량 자료는 실측교통량과 차이가 있었으나, 루프검지기가 실측교통량과 가장 유사하다는 것을 알 수 있었다. 따라서 영상검지기에서 수집된 교통 량이나 영상과 루프를 평균 교통량 보다 루프검지 기에서 수집된 교통량이 가장 실측치에 가깝다고 볼 수 있다. 즉, 본 대상구간에서는 구간 대표 교통 량 생성 시 현재 방식인 루프 및 영상 검지기에서 수집된 교통량은 평균하는 것보다는 영상검지기보 다 신뢰도가 높은 루프검지기를 대표치로 사용하는 것이 더 낫다고 볼 수 있다.
이는 동일한 지점검지기라고 하더라도 이종의 검지기 자료를 모두 이용하여 구간 교통량을 산출 하는 것보다 신뢰도가 높은 검지기자료만을 이용하 는 것이 훨씬 더 대표성이 높다는 것을 의미한다.
Ⅴ. 결론
본 논문은 영상검지기의 증가에 따라 교통정보에 대한 신뢰도에 대한 우려가 높아지고 있는 바, 고속 도로를 대상으로 영상과 루프검지기에서 수집된 교 통량 차이를 비교분석하고 실측교통량과의 차이를 분석하여 신뢰도가 높은 대표 구간 교통량 생성방 법을 제안하였다. 주요한 분석결과는 다음과 같다.
첫째, 영상검지기와 루프검지기에서 각각 수집된 교통량은 동일 구간, 동일한 시간대에 수집된 자료 라도 차이가 있는 것을 알 수 있었다. 영상검지기와 루프검지기의 검지된 교통량은 적게는 약 1,500대/일 에서 많게는 약 11,500대/일 차이가 있었다. 특히, 시 간대별로 최대 약 1,200대/시 까지 차이가 발생하여 영상과 루프검지기의 교통량 차이가 매우 심각함을 알 수 있었다. Paired T-test를 통해 영상검지기와 루 프검지기의 차이를 검증한 결과, 동일한 구간 내에 설치된 영상검지기와 루프검지기 자료는 서로 다름 을 알 수 있었다.
둘째, 실측교통량과 영상 검지기, 루프검지기를 통해 수집된 교통량, 영상 및 루프검지기의 평균으 로 산출되는 대표 교통량과를 각각 비교한 결과, 루 프검지기에서 수집된 교통량이 실측교통량과의 가 장 차이가 적다는 것을 알 수 있었다. 다만, 통계적 검증 결과, 차이가 가장 적은 루프검지기도 실측교 통량과 통계적으로 다르다는 것을 확인하였다.
그럼에도 불구하고 영상검지기에서 수집된 교통 량이나 영상과 루프를 평균 교통량 보다 루프검지 기에서 수집된 교통량이 가장 실측치에 근접한 것 으로 나타났다. 즉, 본 대상구간에서는 구간 대표 교통량 생성 시 현재 방식인 루프 및 영상 검지기 에서 수집된 교통량은 평균하는 것보다는 영상검지 기보다 신뢰도가 높은 루프검지기를 대표치로 사용 하는 것이 더 낫다고 볼 수 있다. 이는 기존 연구에 서 볼 수 있듯이 카메라를 통해 수집된 영상자료를 이용하는 영상검지기는 검지영역의 설정, 조도 변 화에 따라 검지기의 신뢰도가 낮아지기 때문이다. 실제로 서울외곽순환선의 영상검지기는 실측보다 교통량이 적은 반면 서해안선 영상검지기는 교통량 이 많았으며, 이는 영상검지영역의 설정에 대한 오 차로 보인다.
따라서, 낮은 신뢰도를 보이는 다양한 데이터를 이용하여 대표치를 생성하는 것보다, 하나라도 보 다 신뢰성이 높은 데이터를 대표치로 이용하는 것 이 보다 높은 신뢰도를 확보하는 방법으로 판단된 다. 특히 기존 연구와 동일하게 본 연구에서도 영상 검지기보다 루프검지기의 신뢰도가 높게 나타났으 므로, 구간내에 이종 검지기가 존재할 경우 루프검 지기를 이용하여 구간 대표 교통량을 산정하는 방 법을 제안한다. 다만, 루프검지기라고 할지라도 유 지관리 및 기타 다양한 요소에 의해 신뢰도가 저하 될 수 있으므로 검지기 상태에 대한 검증과 평가는 반드시 필요하다. 또한 구간 내에 영상검지기만 존 재할 경우 대표 교통량에 대한 신뢰도가 낮아질 수 있으므로 하나의 루프검지기라도 설치하는 것이 바 람직하다고 판단된다.
다만, 본 연구는 실측교통량에 대한 수집의 한계 로 본선형 영업소가 존재하고 구간 내에 유출입이 없는 구간을 대상구간으로 선정하여 공간적 범위에 제한이 있었다. 따라서 연구 대상구간을 전국으로 확장하여 추가 분석할 필요가 있다. 본 연구에서는 보다 일반적인 조건에서 검지기 자료의 신뢰도를 비교하기 위해 검지기 설치와 관련한 세부 조건들 은 분석하지 않았다. 향후 보다 구체적이고 세부적 인 연구를 위해서는 검지기 설치와 관련한 세부 조 건들을 추가적으로 분석할 필요가 있다.
신뢰도 분석결과, 서울외곽순환선의 영상검지기 는 실측보다 교통량이 적은 반면 서해안선 영상검 지기는 교통량이 많았다. 이는 영상검지영역의 설 정에 대한 오차로 보인다. 영상검지기는 검지영역 의 설정, 조도 변화에 따라 검지 신뢰도가 변화하기 때문에, 영상검지기의 신뢰도를 높이는 방법과 이 에 대한 성능평가에 대한 추가적인 연구가 필요할 것으로 보인다.
또한, 기존 연구에서 영상검지기의 신뢰도가 시 간대별로 차량의 속도별로 달라질 수 있음을 밝혔 으므로 이에 대한 추가적인 분석이 필요하다. 시간 대별로 검지기별 데이터의 수집특성이 어떻게 바뀌 는지를 분석하고 이에 따라 대표치 생성방법을 바 꾸는 것 역시 추가적인 연구가 필요한 부분이다. 특 히, 본 연구에서는 내용적 범위를 구간 교통량으로 제한하였으나, 속도의 경우 어떠한 특성을 보이지 는 비교분석이 필요할 것으로 보인다.