Ⅰ. 서 론
고속도로 휴게소는 이용자에게 편안한 휴식처, 주유 그리고 각종 체험까지 다양한 서비스를 제공하고 있 다. 또한 휴게소는 장거리 운전자나 졸음 운전자가 충분히 쉴 수 있는 공간을 조성하여 사고를 미연에 방지 하는 중요한 역할을 한다. 따라서 휴게소의 적절한 위치 선정은 필수적이며, 이를 위해 정확한 수요 예측과 이용자의 통행 행태를 분석하는 것은 매우 중요하다. 그러나 그동안 휴게소와 관련한 연구는 신뢰성 높은 자 료의 수집이 어려워 매우 제한적이었다. 설문조사를 통해 진행된 연구는 설문조사에 응답하는 피설문자가 매우 적어 분석에 필요한 충분한 양의 표본을 확보하기에 역부족이었다. 그러나 최근 지능형교통체계의 발 전과 높은 하이패스의 보급률을 통해, 전수화에 가까운 자료 수집이 용이해졌다. 이에 본 연구에서는 하이패 스 단말기를 통해 수집된 단거리전용통신(Dedicated Short-Range Communication, DSRC)자료를 활용하여 연구 를 진행한다. 분석 자료는 한국도로공사로부터 제공받아 분석하였다.
본 연구는 이용자의 휴게소 이용 행태를 통행시간, 통행거리, 남은 거리 총 3가지 지표를 통해 구분하고, 각 지표가 휴게소 이용에 미치는 영향을 분석한다. 그리고 각 지표를 토대로 휴게소 이용 확률 모형을 개발 하여 실제 휴게소 이용률과 비교 및 검증한다. 본 연구의 분석 결과는 향후 휴게소 수요 분석과 입지선정을 위한 판단 자료로 사용될 수 있을 것으로 기대된다.
Ⅱ. 선행연구 고찰
휴게소와 관련한 선행연구는 휴게소 이용 차량을 분별하는 방법과 휴게소의 이용률 등을 예측하는 연구 가 주를 이루었다. 휴게소 이용 차량 분별 방법론을 제시한 연구는 주로 톨게이트나 프로브카를 통해 수집된 궤적자료를 토대로 분석하였다.
Ohba et al.(1999)는 톨게이트에서 수집된 자료인 TCS자료를 이용하여 차량의 통행시간 정보를 산정하고, 이를 통해 고속도로 이용 차량의 통행 행태를 분석하는 연구를 진행하였다. Ohba는 톨게이트에서 수집된 자 료를 이용하였기 때문에 차량의 통행시간을 진입톨게이트와 진출톨게이트에서 검지된 시간을 차를 이용하 여 통행시간을 산정했다. Ohba는 분석의 정확성을 위해 이상치(Unusual data) 제거의 필요성을 느꼈고, 하루 를 기준으로 시간대별 통행시간 분포를 이용하여 이상치를 판단했다. Ohba는 이상치를 Type1: 극도로 짧은 통행시간, Type2: 극도로 긴 통행시간, Type3: 운전자 특성에 따라 나타나는 정규분포를 벗어난 특이 행태로 세 가지 유형으로 나눴다. 그 중 Type2를 휴게소나 졸음쉼터를 이용하는 차량으로 간주하고, 연구를 진행했 다. Ohba의 연구는 TCS 자료를 이용하였기 때문에 다소 긴 거리에 따른 차량의 통행시간을 산정하여 휴게소 를 이용한 차량을 정확히 분별할 수 없었으며, 이상치 제거 과정에서 이상치를 규명하는 방법이 연구자의 주 관과 판단에 따라 이루어져 명확한 방법론을 제시하지 못한 한계를 가졌다. Shoichi et al.(2016)는 프로브 카 에서 수집한 ETC 자료를 이용하여 휴게소 이용 차량을 분석하고 특성을 분석하는 연구를 진행하였다. Shoich는 휴게소 이용차량 분별방법을 시공도(Time-space trajectory)를 이용하여 휴게소 구간을 지나는 차량 중 휴게소를 이용하는 차량과 통과 차량의 통행시간 간격(Time interval)이 3분(180초)이상인 차량을 휴게소 이용 차량으로 분별하였다. 또한 Shoichi et al.(2015)에서는 휴게소에 체류하는 시간이 2시간 이하인 차량을 정상 차량으로 보았으며, 고속도를 이용하는 차량의 통행시간이 3시간이상이면 휴게소를 무조건 이용한다는 가정을 한 후 분석하였다. 이 연구에서는 휴게소 체류시간을 고속도로 전체통행시간(진출시간-진입시간)에서 순 통행시간을 감한 시간을 휴게소를 체류한 시간으로 분석했다. 그리고 휴게소 체류시간이 2시간 이하인 행태를 정상적인 휴게행태로 판단하였으며, 식사 시간대 휴게소를 이용하는 차량의 빈도가 전체 시간대에 비해 비정상적으로 매우 높음을 명시하였다. Shoich의 연구를 통해 식사 시간대 휴게소이용차량의 분별의 어 려움과 휴게소 체류시간 산정 방법을 도출할 수 있다. Lee et al.(2017)는 DSRC자료를 이용하여 휴게소를 이 용하는 차량을 분별하는 방법을 누적분포를 이용하여 분석하였다. Lee의 연구에서는 휴게소 이용 경계시간 을 휴게소 RSE 링크를 통과한 차량의 구간통행시간을 일정한 시간대별 집계자료를 구축한 후, 대표그룹 중 심 탐색법을 활용해 집계된 구간통행시간자료를 탐색하여 대표그룹을 선정하고, 대표그룹의 구간통행시간을 초과하는 시간을 휴게소 이용 경계시간으로 정의했다. 즉, 시간대별 대표통행시간을 휴게소 이용경계시간으 로 간주하고, 통행시간이 이를 초과한 차량을 휴게소 이용 차량으로 분석했다.
휴게소 이용률 예측과 이용자의 행태를 분석한 연구는 주로 설문조사에 의존하여 충분한 데이터의 양을 확보하지 못함을 알 수 있다. Lim et al.(2009)은 설문조사를 통하여 이용자의 휴게소 이용 목적과 체류시간, 선호도 등을 조사하여 통계적으로 휴게소 이용률을 분석하였다. 이를 통해 이용자의 정확한 통행 행태와 선 호는 알 수 있지만, 분석 결과를 일반화하기에는 자료의 양이 매우 제한적이었다. Baek and Kim(2006)은 휴 게소 이용 실태 조사 자료를 이용하여 휴게소 내 주차회전율, 혼잡률, 이용률을 분석하는 시도를 했지만 이 를 이용하여 휴게소 이용 수요를 추정하기는 어려웠다. Kazuo et al.(2014)의 연구도 위의 연구와 마찬가지로 설문조사를 기반으로 분석했다. 설문을 통해 분석된 이용자의 편의시설사용유무, 식사, 선호인식, IC로부터 의 거리, 그리고 휴게소 이용 빈도 등을 이용해 로짓모형을 이용하여 휴게소 이용 수요 모형을 개발하였다. 이 연구는 개별 차량의 통행시간이나 통행거리와 같은 객관적인 수치에 근거한 수요모형이 아닌 운전자의 주관적 요소(선호도)를 반영한 휴게소 이용 수요 모형을 개발했다.
선행 연구를 고찰한 결과, 기존의 휴게소 이용 차량 분별과 수요추정에 대한 연구는 전자식 자료 혹은 설 문조사 자료 활용 등 다양한 시도를 했지만 자료의 객관성과 신뢰성의 문제를 안고 있었다. 또한 연구자의 주관과 판단에 따라 휴게소를 이용한 차량을 분별하기도 했다. 분석에 활용된 자료 또한 차량이 검지되는 위 치의 간격이 너무 커서 차량의 통행특성을 명확히 드러내기에 어려운 점이 있었다. 따라서 본 연구에서는 4~5km 간격으로 차량의 궤적이 수집되는 DSRC자료를 이용하여 휴게소를 이용하는 차량을 분별하는 방법에 대해 정립한다. 또한 본 연구에서는 Shoich의 연구결과를 참고하여 고속도로에 진입과 진출까지의 총 통행시 간은 휴게소 체류시간과 순수 통행시간으로만 구분하여 분석한다. 그리고 휴게소 이용자의 통행 행태를 정 량화할 수 있는 객관적인 지표를 설정하고, 이를 토대로 휴게소 이용 수요 모형을 개발하고 검증한다.
본 연구는 3장에서 휴게소 이용 차량의 분별 방법과 휴게소 이용 확률 모형 개발 방법에 대해 명시하고, 4장에서 방법론 적용을 통해 본 연구에서 제안한 휴게소 이용 분별 방법과 휴게소 이용 확률모형의 적합성 을 실이용률 비교를 통해 검증한다.
Ⅲ. 휴게소 이용 확률 모형 개발 방법론
본 장에서는 휴게소 이용 차량 분별 방법과 휴게소 이용차량의 통행행태를 토대로 휴게소 이용 확률 모형 개발 방법에 대해 논한다. 본 연구의 분석 자료는 DSRC와 TCS자료를 통합한 자료를 이용한다. 분석자료는 하루단위를 기준으로 수집되고, 차량의 ID는 개인정보보호에 따라 무작위로 부여 되기 때문에 24시 이후에 측정된 차량에 대해서는 분석이 어렵다. 따라서 본 연구는 모든 차량이 One day를 기준으로 통행을 종료하 는 것으로 간주한다. 즉, 수면시간(8시간)을 제외한 일일 활동시간인 16시간(960분)이하를 통행한 차량에 대 해 분석한다. 그리고 통행시간이 10분 이하인 데이터는 오류데이터(Ohba et al., 1999)로 제외한다. 즉, 본 연 구는 통행시간이 10분이상 1000분이하인 차량을 대상으로 분석을 진행한다. Shoich(2015)의 연구에서 최대 분석 범위로 통행시간을 6시간(720분)으로 지정하여 분석한데 반해 본 연구는 보다 넓은 시간적 범위의 분석 을 진행했다.
연구는 크게 2가지 단계로 이루어진다. 첫째, 휴게소 이용차량을 분별하고, 휴게소 이용 차량의 궤적(경로) 자료를 구축한다. 구축된 궤적자료를 이용하여, 통행 행태 지표(통행시간, 통행거리, 남은거리)가 휴게소 이 용에 미치는 영향을 분석한다. 둘째, 이항 로짓 모형(Binary Logit Model)을 이용하여 개별차량의 휴게소 이용 확률 모형을 개발하고 검증한다.
1. 분석 대상 구간 설정
본 연구는 휴게소를 포함한 링크를 기준으로 상류부와 하류부 링크를 포함한 총 3개의 링크를 분석한다. <Fig. 1>과 같이 분석 대상 휴게소를 포함한 휴게소 구간(sa)와 휴게소 상류부 구간(usa) 그리고 휴게소 하류 부 구간(dsa)을 명시하고, 3개 구간을 지나는 차량을 대상으로 분석한다.
2. 고속도로 휴게소 이용차량 분별
고속도로 휴게소 이용 차량 분별 방법은 분석 대상 링크 구간의 km단위별 통행시간을 이용하여 분석한다.
Step1. 본 연구에서 설정한 3개의 링크를 지나는 개별 차량의 통행시간을 산정한다. 예를 들면 휴게소 구 간의 통행시간은 휴게소 전후에 설치된 RSE➂에서 검지된 시각과 RSE➁에서 검지된 시각의 차이다. 즉, 개 별차량 n이 링크 j를 통과한 통행시간은 식(1)과 같다.
where,
Step2. 분석대상 링크 j를 지나는 차량의 단위 km당 평균 통행시간을 산정한다. 식(1)을 통해 산정된 개별 차량의 통행시간을 대상으로 구간 단위 km당 평균통행시간은 식(2)와 같다. 이를 이용하여 휴게소 구간과 휴 게소 상·하류부 구간을 지나는 차량의 매15분 단위의 평균통행시간을 산정한다.
where,
Step3. 식(2)를 통해 산정된 차량의 평균 통행시간을 이용하여 휴게소를 이용한 차량을 분별한다. 조건 H1은 매15분 단위의 교통상황을 반영하여 휴게소 상·하류구간의 평균 통행시간의 90%를 초과한 차량을 휴게소를 이용한 차량으로 판단하는 조건이다. H1의 조건을 만족하면 그 차량은 휴게소를 이용한 것으로 간주한다.
2. 개별 차량 경로 자료 구축
본 연구는 DSRC자료를 사용하였기 때문에 차량의 출발지와 목적지는 진입 IC와 진출 IC가 된다. 하지만 이는 운전자가 직접적으로 이동한 통행시간과 통행거리로 보기 매우 힘들다. 따라서 본 연구는 Lim et al.(2009)의 연구를 참고하여, 운전자가 최초 출발지, 최종 목적지부터 고속도로까지 접근하는 통행시간과 통 행거리를 각각 30분, 20km라 가정하여 분석한다.
본 연구는 Text 형태로 저장된 방대한 양의 DSRC자료를 분석하기 위해 마이크로소프트사에서 제공하는 Visual Basic for Application을 이용하여 분석하며, 대상 휴게소 구간을 지나는 개별 차량의 통행거리, 통행시 간 그리고 남은 거리를 추출하여 차량의 궤적자료를 구축한다.
3. 휴게소 이용자의 통행 행태 지표 설정 및 분석
본 연구에서 설정한 휴게소 이용자 행태 분석 지표는 총 3가지이다. ①통행시간, ②통행거리, ③휴게소부 터 통행종료까지 남은 거리이다. 각 지표의 선정이유는 다음과 같다. ①휴게소 이용에 큰 영향을 미치는 요 인은 편의시설(화장실)이고, 이는 통행시간과 밀접한 관계가 있다(Kazuo et al., 2014). 또한 ②휴게소 이용은 주유와 밀접한 관련이 있기 때문에 통행거리에 대한 분석이 중요하다(Shoichi et al., 2015). 마지막으로 ③휴 게소에서 통행종료까지 남은 거리는 운전자의 심리적, 생리적인 문제와 더불어 휴게소 이용에 큰 영향을 미 친다(Shoichi et al., 2016). 본 단계에서는 위 3가지 지표에 따른 휴게소 이용 현황(빈도)을 분석한다.
4. 고속도로 휴게소 이용 확률 모형 개발
본 단계에서는 앞서 수집된 휴게소 구간을 지나는 차량의 통행 행태를 기반으로 휴게소 이용확률 모형을 개발한다. 본 연구의 모형은 개별 운전자의 휴게소 이용 확률 모형을 의미하며, 이를 통해 실시간으로 수집 되는 운전자의 궤적자료를 토대로 운전자가 이용할 휴게소를 추정할 수 있다.
모형의 독립변수는 통행 행태 지표인 통행시간, 통행거리, 남은 거리이고, 휴게소 이용여부를 종속변수로 취하는 이항 로짓 모형을 형태의 모형이다. 이때, 휴게소 이용 여부인 종속변수를 휴게소를 이용하면 Y=1, 이용하지 않으면 Y=0으로 설정하면, Y의 기댓값은 휴게소 이용 확률 함수로 나타낼 수 있다.(4)
본 연구는 식사 시간대인 11~13시, 19~21시간대는 분석에서 제외한다. 이 시간대에는 휴게소 이용자가 식 사를 위해 집중적으로 휴게소를 이용하기 때문에 본 연구에서 설정한 통행 행태 지표를 통하여 식사시간대 휴게소 수요를 추정하는 것은 매우 어렵다. 따라서 식사시간대는 시간더미 변수를 적용하여 분석 시간대에 서 제외하였다. 식(5)는 본 연구에서 추정하는 고속도로 휴게소 이용 확률 모형을 나타낸다.
where,
-
xi : travel time to S.A.
-
x2 : travel distance to S.A.
-
x3 : spare distance from S.A. to destination
-
α : time dummy variable (mealtime=0, others=1)
-
β1,2,3 : parameter of x1,2,3
-
c : constant
5. 휴게소 이용 확률 모형 검증
휴게소 이용 확률 모형 검증은 연구 대상 지역인 안성휴게소에 다른 일시의 데이터를 적용하여 한국도로 공사에서 조사한 휴게소 이용률과 비교분석한다. 본 모형의 검증은 두 가지 측면에서 이루어진다.
첫째, 본 연구에서 제안한 휴게소 이용차량 분별 방법론을 검증한다. 식(3)을 이용하여 분석대상지역의 휴 게소 이용차량을 분별하고 휴게소 이용률을 산정한다. 이후 한국도로공사에서 제공한 휴게소 실태조사의 실 제 휴게소 이용률과 비교한다.
둘째, 식(5)를 통해 추정한 개별 차량의 휴게소 이용 확률의 평균값과 휴게소 실제 이용률을 비교하여 모 형의 적합성을 확인한다.
본 연구의 분석 표본과 한국도로공사에서 조사한 전수화된 자료크기 차가 존재한다. 따라서 휴게소 이용 비율을 비교하며, 실제 휴게소를 이용한 차량과 본 연구를 통해 분별된 휴게소 이용 차량의 절대치 비교를 통해 향후 본 연구의 보완할 점과 한계에 대해 고찰한다.
Ⅳ. 고속도로 휴게소 이용 확률 모형 개발
1. 분석자료 구조
본 연구는 한국도로공사에서 제공한 DSRC와 TCS 궤적자료를 통합한 자료를 이용하여 분석했다. 분석 데 이터는 임의로 부여된 차량ID, 차종, 검지한 RSE(or TCS)번호 그리고 검지된 시각으로 총 4가지 범주로 나누 어진다. 본 연구의 자료는 고속도로 구간에 4~5km 간격으로 설치되어 있는 RSE를 통해 차량의 검지시각이 수집되며, 검지시각은 24시간을 초 단위로 환산되어 나타난다. 분석 데이터에 대한 구조는 <Table 1>과 같다.
2. 연구의 범위
본 연구는 경부 고속도로의 안성IC에서 오산IC 사이에 위치한 안성휴게소(서울상행)를 대상으로 분석했 다. 이 구간은 편도 4차로, 버스전용차로 1차로로 구성된 도로이며, 분석 구간의 길이는 총 14.1km이다. 안성 휴게소는 RSE 1030과 1031번 사이에 위치하였으며, 휴게소 구간의 상류부와 하류부 구간을 대상으로 분석하 기 위해 RSE1029, 1030, 1031, 1032의 총 4개의 RSE를 대상으로 연구를 진행하였다. 분석 대상지역은 <Fig. 2>와 같다.
본 연구의 시간적 범위는 평일 2015년 5월 20일 수요일 00시~24시, 주말 2015년 5월 24일 일요일 00시~24 시로 평일 하루, 주말 하루를 대상으로 분석하였으며, 이는 평일과 주말의 휴게소 이용 행태의 변화를 분석 하기 위함이다.
3. 고속도로 휴게소 이용차량 분별
휴게소 이용차량 분별은 휴게소 구간을 지나는 차량의 통행시간을 분석하여 분별한다. <Fig. 3>은 본 연구 의 분석 대상 링크인 하류부, 휴게소구간, 상류부 링크의 통행시간을 나타낸 그래프이다. 시공도(Time-sapce trajectory)를 이용하여 분석한 결과, Veh.1은 비교적 일정한 속도로 휴게소 상류부 구간, 휴게소 구간 그리고 휴게소 하류부 구간을 통과함을 알 수 있다. 따라서 휴게소를 이용하지 않은 차량으로 분별할 수 있다. 반면, Veh.2의 경우, 휴게소 구간의 통행시간이 휴게소 전후 구간에 비해 매우 긴 것을 알 수 있다. 이를 통해 Veh.2는 휴게소를 이용한 차량으로 추정할 수 있다. 휴게소 체류 시간은 휴게소 구간 링크 통행시간과 하류 부 링크 통행시간의 차이로 산정할 수 있다.
<Fig. 4>는 휴게소 구간을 지나는 차량을 통행시간별로 분류한 그래프로 2가지 분포(휴게소 이용, 비이용) 가 나타남을 알 수 있다. 두 분포가 중첩되는 부분은 뿔 모양으로 나타난다. 본 연구에서는 두 분포의 Overlap을 기준으로 휴게소를 이용하는 차량의 휴게소 구간 통행시간이 휴게소를 포함하지 않은 전/후 구간 에서의 통행시간보다 90%이상 초과한다는 것을 도출하였다. 그리고 이는 식(3)에 반영하였다.
휴게소 이용 차량 분별 결과, 평일 휴게소 이용 차량은 총 50,975대/일 중 2,625대/일로 전체의 약 5.15%를 차지했다. 주말에 휴게소를 이용한 차량은 총 휴게소 구간 통과차량 54,719대/일 중 4,486대/일로 약 8.19%이 다. <Fig. 5>는 하루 동안 휴게소를 이용한 차량의 통행시간을 시간대에 따라 나타낸 분포로 식사시간대인 12시와 19시에 휴게소를 이용하는 밀집 빈도가 매우 높음을 알 수 있다. 그리고 휴게소 구간 통행시간은 약 190초에 가장 많이 밀집되어있음을 알 수 있다. 앞서 언급한대로 이상치 제거를 위해 통행시간이 1000분 이 상인 차량은 제외하고 분석했다.
4. 휴게소 구간 개별 차량 경로자료 구축
휴게소 구간을 지나는 차량의 진입부터 진출까지의 검지시각과 RSE간의 거리정보를 이용하여 개별 차량 의 궤적자료를 구축한다. 진입 IC부터 휴게소 RSE까지, 그리고 휴게소 RSE부터 진출 IC까지의 통행시간과 통행거리를 추출하여 분석에 이용한다. 휴게소 구간을 지난 차량의 경로자료는 <Table 2>와 같다. 차량 간 통행시간의 차이가 큰 이유는 혼잡 시간과 비혼잡 시간으로 인한 결과로 해석된다.
5. 고속도로 휴게소 이용자 행태 분석
본 장에서는 휴게소 이용 행태 지표인 통행시간, 통행거리, 남은 거리와 휴게소 이용간의 관계를 분석한 다. <Table 3>과 <Fig. 6>은 휴게소를 이용한 차량이 최초 출발지부터 휴게소까지 통행한 시간의 빈도를 나 타낸다. 평일 휴게소 이용 빈도는 통행 시간이 90분 이상일 때, 휴게소 이용 차량이 623대/일로 가장 높았고, 그 이후 서서히 감소하는 것으로 나타난다. 반면. 주말은 통행시간이 평일보다 조금 짧은 70분 이상일 때, 휴 게소를 이용한 차량이 1167대/일로 휴게소 이용 빈도가 가장 높았음을 알 수 있다. 즉, 휴게소 이용자는 평일 보다 주말에 더 짧은 시간을 주행한 후 휴게소를 이용함을 알 수 있었다. 통행거리와 휴게소 이용 빈도 관계 는 <Table 4>와 같다. 분석 결과, 휴게소 이용은 통행거리가 평일에는 110km, 주말에는 90km일 때, 휴게소를 가장 많은 것으로 나타나며, <Fig. 7>과 같은 분포를 나타낸다.
<Table 5>는 휴게소에서 통행종료까지 남은 거리에 따른 휴게소 이용 빈도를 나타낸다. 휴게소 이용자는 <Fig. 8>과 같이 남은 거리가 길수록 휴게소 이용 빈도가 높아짐을 알 수 있었다. 휴게소 이용자의 약 27%는 남은 거리가 70km이상 일 때, 휴게소를 이용하는 것으로 분석됐다. 또한 남은 거리가 30km이하일 때, 휴게 소를 이용하는 빈도가 급격히 낮아짐을 알 수 있었다.
6. 고속도로 휴게소 이용 확률 모형
본 단계는 앞서 분석된 휴게소 이용자의 행태분석 지표를 이용하여 휴게소 이용 확률 모형을 개발한다. 본 연구에서 개발하는 휴게소 이용 확률 모형의 변수는 다중공선성의 문제가 발생할 수 있다. 따라서 상관관 계 분석을 통해 이항 로짓 분석 가능성을 검증한다. 상관관계 분석결과, <Table 6>과 같이 변수간의 상관관 계가 거의 없는 것으로 나타나 3가지 지표를 모두 활용한 모형개발이 가능함을 확인했다. 본 연구에서 설정 한 3가지 지표를 이용하여 이항 로짓 분석을 통해 계수를 추정한 결과는 <Table 7>과 같다. 따라서 본 연구 의 고속도로 휴게소 이용 확률 모형은 식(5)에 <Table 7>을 통해 추정된 계수를 대입한 형태가 된다.
모형의 변수의 계수를 추정한 값을 보면 주중에는 남은거리가 휴게소를 이용하는데 큰 영향을 주는 것으 로 판단되었고, 주말에는 통행거리가 휴게소를 이용하는데 많은 영향을 줌을 알 수 있다. 또한 <Table 7>의 결과 중 Exp(B) 값을 통해 주중에 단위 남은 거리가 1 증가할 때 휴게소를 이용할 확률은 1.047 만큼 더 올 라가고, 주말에는 단위 통행거리가 1 증가할 때 1.024 만큼 그 확률이 더 늘어남을 통계적으로 분석 할 수 있 다. 즉, 남은 거리가 40km에서 (40km+1km)로 증가하면 휴게소를 이용할 확률이 (1.047-1)*100% 정도 더 늘어 남을 의미한다.
7. 고속도로 휴게소 이용 확률 모형 검증
본 연구에서 개발한 휴게소 이용 확률 모형의 검증을 위해 한국도로공사에서 제공한 2010년 휴게소 이용 실태 자료를 이용한다. 한국도로공사(2010.03)에서 제공한 일일 안성휴게소(상행) 이용 교통량은 8,422대/일이 고, 동일한 날짜에 이 구간을 지나는 통과 교통량은 총 128,252대/일이다. 따라서 평일 안성휴게소(상행)의 실 제 휴게소 이용률은 6.56%이다. 실제 휴게소 이용률과 본 연구의 휴게소 이용차량 분별 방법론, 개별차량 휴 게소 이용 확률 모형을 통해 분석한 휴게소 이용률은 <Table 8>과 같다. 분석결과, 본 연구를 통해 추정한 휴 게소 이용률은 실 이용률과 비율로는 1~2%의 차이를 보이나 휴게소 이용차량의 절대치는 오차가 큰 것으로 나타난다. 이는 DSRC를 통해 수집된 자료의 표본 양과 모수의 양이 달라 나타난 결과로 볼 수도 있지만, 본 연구가 휴게소를 집중적으로 이용하는 시간인 식사시간대를 제외하고 분석하였기 때문에 나타난 결과로 판 단된다.
Ⅴ. 결론 및 한계점
휴게소는 장거리 운전자나 졸음 운전자가 충분히 쉴 수 있는 공간을 조성하여 사고를 미연에 방지하는 중 요한 역할을 한다. 따라서 휴게소의 적절한 위치 선정은 필수적이며, 이를 위해 정확한 수요 예측과 이용자 의 통행 행태를 분석하는 것은 매우 중요하다. 그러나 이러한 필요성에도 불구하고, 분석을 위한 충분한 양 의 신뢰적인 자료 수집이 어려워 휴게소와 관련한 연구는 그리 많지 않았다. 그러나 최근 하이패스의 높은 보급률과 지능형교통체계의 발전으로 인해 전수화에 가까운 자료 수집이 용이해졌다. 따라서 본 연구는 고 속도로 가로변에 설치된 RSE를 통해 수집된 DSRC자료를 이용하여 휴게소 이용자의 통행 행태를 분석하고, 휴게소 이용 확률 모형을 개발하였다.
분석 결과, 휴게소 이용자는 통행시간이 평일 90분, 주말 70분 이상일 때 그 휴게소 이용 수요가 가장 많 았고, 통행거리는 평일 110km, 주말 90km 이상 주행했을 때 가장 높은 것으로 분석되었다. 그리고 휴게소부 터 이용자의 통행종료까지 남은 거리가 30km이하일 때 휴게소 이용률은 급격히 감소함을 알 수 있었다. 본 연구에서 휴게소 이용자의 행태 지표로 설정한 통행거리, 통행시간, 남은 거리를 이용하여 휴게소 이용 확률 모형을 만들고 검증한 결과, 실제 휴게소 이용률과 본 모형을 통해 산정된 휴게소 이용률 추정값은 1~2%의 오차가 발생한다. 하지만 휴게소 이용 차량의 절대치는 상당히 많은 오차가 발생함을 알 수 있었다. 이는 휴 게소 이용이 집중적으로 몰리는 식사시간대를 제외하고 분석한 결과로 나타난 것으로 판단된다.
본 연구는 안성휴게소(상행)을 기준으로 분석하였기 때문에 본 연구에서 추정한 휴게소 이용 확률 모형의 모수는 휴게소마다 달라 타 휴게소에 본 연구의 모형을 적용하기 어려운 한계가 있다. 그러나 본 연구의 휴 게소 이용차량 분별방법과 휴게소 이용 확률 모형 개발 방법론을 이용하여 휴게소의 개별적인 분석이 가능 할 것으로 예상된다. 향후 이 문제를 해결하기 위해 연구의 범위를 확장하여 고속도로에 속한 모든 휴게소를 대상으로 연구를 진행한다면 일반화할 수 있는 결과가 도출될 것으로 판단한다.
본 연구의 결과는 향후 휴게소의 수요분석과 휴게소 입지 선정에 대한 기초 자료를 제공할 수 있을 것으 로 보이며, 고속도로 운영자가 이용자의 서비스 향상을 위한 차별화 전략을 실시(수립)할 때에 적극 활용될 수 있을 것이다.